• Home
  • About
    • Eyedicamp 개발 이야기 photo

      Eyedicamp 개발 이야기

      Big Data, Machine Learning, AI 등의 다양한 이야기를 하는 곳.

    • Learn More
    • Email
    • Instagram
    • Github
  • Posts
    • All Posts
    • All Tags
  • Projects

All Posts

  • Should Space Exploration Budget be Increased?

    영어 글쓰기 스터디 (2주차)

    Read More
  • Should Generative AI be Regulated?

    영어 글쓰기 스터디 (1주차)

    Read More
  • [8.2] Training Graph Neural Networks

    Learning Objective : GNN Training Pipeline

    Read More
  • [8.1] Graph Augmentation for GNNs

    Graph Augmentation : Feature/Structure Augmentation

    Read More
  • [7.3] Stacking layers of a GNN

    Stacking Layers : Layer Connectivity

    Read More
  • [7.2] A Single Layer of a GNN

    Single Layer : Message Transformation, Message Aggregation

    Read More
  • [7.1] A general Perspective on GNNs

    GNN Framework를 만들기 위해 고려해야할 요소

    Read More
  • [6.3] Deep Learning for Graphs

    Graph를 위한 Deep Learning의 개요

    Read More
  • [6.2] Basics of Deep Learning

    Deep Learning에 대한 설명

    Read More
  • [6.1] Introduction to Graph Neural Networks

    GNN에 대한 서론

    Read More
  • [5.3] Collective Classification

    Loopy Belief Propagation

    Read More
  • [5.2] Relational and Iterative Classification

    Relational Classification vs Iterative Classification

    Read More
  • [5.1] Message passing and Node Classification

    Message passing의 개요

    Read More
  • [4.4] Matrix Factorization and Node Embeddings

    Matrix Factorization을 이용한 Node Embedding 방법

    Read More
  • [4.3] Random Walk with Restarts

    추천 시스템과 Random Walk with Restarts

    Read More
  • [4.2] PageRank: How to solve?

    PageRank를 풀어내는 수학적 방법

    Read More
  • [4.1] PageRank

    PageRank란 무엇인가

    Read More
  • [3.3] Embedding Entire Graphs

    그래프 단위로 embedding 하는 방법

    Read More
  • [3.2] Random Walk Approaches for Node

    Random Walk란?

    Read More
  • [3.1] Node Embeddings

    Node Embedding이란?

    Read More
  • [2.3] Traditional Feature-based Methods : Graph

    전통적인 feature-based 방법들(Graph-Level)

    Read More
  • [2.2] Traditional Feature-based Methods : Link

    전통적인 feature-based 방법들(Link-Level)

    Read More
  • [2.1] Traditional Feature-based Methods : Node

    전통적인 feature-based 방법들(Node-Level)

    Read More
  • [1.3] Choice of Graph Representation

    문제에 따른 그래프 표현 방법

    Read More
  • [1.2] Applications of Graph ML

    그래프 머신러닝 적용 사례

    Read More
  • [1.1] Why Graphs?

    그래프를 사용해야하는 이유

    Read More
  • 관계형 vs 비관계형 데이터베이스

    관계형 DB와 비관계형 DB에 관하여

    Read More
  • 사과와 로봇

    애플이냐 안드로이드냐 그것이 문제로다

    Read More
  • 블로그를 시작하며

    시작은 미약하지만 끝은 창대할 블로그의 시작

    Read More